Fuelling Europe’s Future

How the transition from oil strengthens the economy
01. Approach
Stakeholder consultation to guide scenario analysis

STAKEHOLDERS CONSULTED THROUGHOUT PROJECT
• on data
• on assumptions about the future
• on scenarios to model

STAKEHOLDERS INCLUDE
• automotive sector
• battery sector
• energy sector
• trade union
• consumer organisations
• NGOs

CORE SCENARIOS
• Reference (REF)
• Current Policy Initiatives (CPI)
• Technology deployment (TECH)
02. Outcomes
Low-carbon technologies change the nature of spending on mobility

SPENDING ON IMPORTED OIL IS REDUCED

By 2030, EU spending on imported oil is reduced by €49bn in the TECH scenario compared to the REF scenario.
Low-carbon technologies change the nature of spending on mobility

MORE IS SPENT ON THE TECHNOLOGY IN THE VEHICLE

Drivers have to spend more on the technologies in the car required to bring about the transition, whether this is a hybrid motor, more fuel efficient tyres or battery electric vehicles.

Typically this generates demand for car manufacturers and suppliers, but a key uncertainty remains the extent to which batteries are manufactured in Europe.

Household spending on vehicles is increased. This value is mostly captured by EU companies and recirculated to the economy, although uncertainties remain about the location of battery cell manufacturing.
Low-carbon technologies change the nature of spending on mobility

OVERALL LESS IS SPENT ON MOBILITY

For the economy in aggregate, the fuel savings outweigh the extra spending on the car

Over time, this means that consumers have more to spend on other things

Some of this generates demand for EU goods and services but some of it is spent on imports

Low-carbon technologies are more efficient, so household spending on energy for mobility is reduced.
The transition leads to a small net increase in GDP

THE NET IMPACT FOR THE EUROPEAN ECONOMY IS POSITIVE

Compared to the alternative of not improving the CO₂ efficiency of passenger cars, a transition to low-carbon cars will lead to small increases (0.1-0.2%) in GDP by 2030.

A transition that pushes beyond 95 gCO₂ per km (and the proposed legislation to 2030) will yield greater net economic benefits in all the TECH scenarios tested.
The net impact on employment is small but positive - by 2030, 206,000 jobs are created.

THE JOBS IMPACT VARIES BY ECONOMIC SECTOR

The oil supply sector sees a reduction in employment.

Vehicle assembly sees very little change in employment to 2030, but thereafter the dominance of relatively simple electric vehicles leads to a reduction in employment.

Vehicle parts manufacturers see fairly significant gains.

Service sector jobs dominate the impact.
Jobs are created because of the improvement in GDP and because of the structure of the economy

For every million Euros spent there are relatively few jobs in Oil and Gas extraction (4) or Refining (6) compared to the average for the whole economy (24) [see figure]

Some 74% of all European employment is in services and so the additional value retained in Europe as a result of the transition away from oil. The modelling shows that 50% of the increase in net employment are services jobs.
Government finances are not affected much by the loss of fuel duty

FUEL DUTY WILL BE REDUCED BY €55BN BY 2030

It is inevitable that fuel duty revenues will be reduced with lower carbon cars unless fuel duty rates are increased.

However, the whole economy modelling analysis suggests that there will be compensatory tax revenues from income tax, VAT and social security as a result of the net increase in consumer spending, GDP and employment.
Smart Charging for plug-in electric vehicles matters

IF ELECTRIC VEHICLE CHARGING IS NOT MANAGED, IT WILL REQUIRE AN INCREASE IN GENERATING CAPACITY

However, investing in smart charging infrastructure technology today will allow electric vehicle charging to be spread over times of low demand.

Our analysis shows this investment to be cost effective, with net benefits as large as €650 per electric vehicles by 2030 in countries such as France.
Air quality is significantly improved, while carbon emissions are substantially lowered

AIR QUALITY IN EUROPEAN CITIES WILL DRAMATICALLY IMPROVE IN THE LONG TERM

In all our technology scenarios we see significant reductions in tail pipe emissions as most cars become Zero Emission Vehicles by 2050, which could mean that as many as 467,000 premature deaths are avoided.

By 2050 there will be an 88% reduction in CO₂ emissions from today.
03. Concluding Remarks
Concluding remarks

A TRANSITION TO LOW CARBON MOBILITY IS TECHNOLOGICALLY FEASIBLE

Technological solutions to low and zero carbon emission cars are known and in the market.

Some technologies are already cost effective, some are on a trajectory to be cost effective in the next few years while the costs of others are more uncertain.

A TRANSITION TO LOW CARBON MOBILITY IS ECONOMICALLY AND ECOLOGICALLY DESIRABLE

All the technology transitions we looked at yielded net positive economic outcomes, which is made possible by the reduction in spending on imported oil.

The economic benefit from reducing CO₂ emissions represents a WIN-WIN for Europe.

A faster transition to zero emission vehicles would dramatically improve air quality in Europe’s cities.

TRANSITION CHALLENGES REMAIN FOR POLICY-MAKERS TO OVERCOME

Policy makers need to focus on managing transition barriers:

1) support the deployment of sufficient infrastructure to inspire consumer confidence
2) promote integration of electric vehicles with the grid, so that it is “smart” and mutually reinforcing
3) mitigate the impact of job losses in traditional combustion engine manufacturing and petroleum refining through skills re-training and regional development programmes
04. More information
More information

Fuelling Europe’s Future technical and summary reports available online

https://www.camecon.com/how/our-work/fuelling-europes-future/

@CambridgeEcon

Cambridge Econometrics

Disclaimer

The stakeholders who contributed to this study shared the aim of establishing a constructive and transparent exchange of views on the technical, economic and environmental issues associated with the development of low-carbon technologies for cars. The objective was to evaluate the boundaries within which vehicle technologies can contribute to mitigating carbon emissions from cars across Europe. Each stakeholder contributed their knowledge and vision of these issues. The information and conclusions in this report have benefitted from these contributions, but should not be treated as necessarily reflecting the views of the companies and organisations involved.
Fuelling Europe’s Future

How the transition from oil strengthens the economy

Philip Summerton